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Abstract—Convolutional neural networks (CNN) have demonstrated state-of-the-art classification results in image categorization, but
have received comparatively little attention for classification of one-dimensional physiological signals. We design a deep CNN
architecture for automated sleep stage classification of human sleep EEG and EOG signals. The CNN proposed in this paper amply
outperforms recent work that uses a different CNN architecture over a single-EEG-channel version of the same dataset. We show that
the performance gains achieved by our network rely mainly on network depth, and not on the use of several signal channels.
Performance of our approach is on par with human expert inter-scorer agreement. By examining the internal activation levels of our
CNN, we find that it spontaneously discovers signal features such as sleep spindles and slow waves that figure prominently in sleep
stage categorization as performed by human experts.
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1 INTRODUCTION

THE diagnosis of sleep disorders requires an analysis of
physiological information recorded during sleep. Sleep

scoring (or staging) is a key ingredient in this analysis, in
which continuous-time signals are categorized into sleep
stages in discrete time intervals, typically 30s in duration [1].
The technique relies on highly trained human technicians,
making the process time-consuming, and yields results that
are subject to error, subjectivity, and variation [2], [3]. Au-
tomated sleep scoring can, therefore, contribute to more
efficient, objective, and reliable diagnosis of sleep-related
disorders. Motivated by the excellent performance achieved
by convolutional neural networks (CNNs) in the task of im-
age classification [4], [5], [6], we investigate the application
of deep CNNs for polysomnographic signal classification
in the sleep scoring domain, showing that near-human
performance can be attained. We go on to describe some
of the characteristic signal features that are learned by such
CNNs during training over human sleep signal data.

1.1 Contributions of this paper

This paper makes two main contributions. First, we de-
scribe a novel deep CNN network design that is trained to
classify multi-channel human polysomnogram signal data
into sleep stages, and that improves upon the classification
performance of prior CNN work for the same task. We
show that this performance gain relies mainly on increased
network depth, and not on the use of multi-channel data.
Performance of our approach is also competitive with prior
work that uses a more complex combination of CNN and
LSTM recurrent neural networks (RNN), as well as with
human expert inter-scorer performance.

The second, and perhaps more important contribution
of this paper, is an initial investigation of the internal repre-
sentation of the sleep signals that is learned by the proposed
CNN. By studying the hidden internal activation levels that
occur in response to different types of input signals, both
natural and synthetic, we find that the CNN proposed in
this paper spontaneously learns specific signal features such
as sleep spindles and slow waves that play important roles
in sleep staging by human experts. As far as we are aware,
this constitutes the first report of such feature emergence in
CNN for one-dimensional sleep signal classification.1

1.2 Structure of the paper

Section 2 provides general background information about
the task of sleep stage classification, and about convolu-
tional neural networks, which will serve as the basis for
the classification approach used in the paper. Section 2 also
includes a description of related work. Section 3 describes
the specific human sleep data set to be used in the experi-
mental evaluation of the proposed approach, as well as the
architectural details of the convolutional network model,
and the experimental evaluation procedures, including the
approach used to identify learned internal features. Sec-
tion 4 discusses the results obtained, and describes some of
the specific signal features that develop within the network
during training. The paper ends with conclusions and a
description of future work.

1. The present paper is an extended version of [7].
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2 BACKGROUND AND RELATED WORK

2.1 Human sleep and sleep stage classification

Sleep is a natural recurring state in humans and many
animal species that is known to be vital to human health [8].
Sleep deficiency correlates with health problems, includ-
ing Alzheimer’s disease and dementia [9], [10], disruption
of processes associated with inflammatory response and
cholesterol regulation [11], Parkinson’s disease [12] and
heart disease [13], [14].

2.1.1 Polysomnography (PSG)

Polysomnographic sleep studies provide an important tool
in diagnosing sleep disorders associated with sleep defi-
ciency. Polysomnography is a multi-parameter test based
on several different types of physiological signals. Electri-
cal signals from sensors placed on the body during sleep
are recorded and used for analyzing patients’ sleep. These
signal recordings are collectively called polysomnograms
(PSGs). PSGs are composed of data from electroencephalo-
grams (EEG, corresponding to cortical electrical activity),
electrooculograms (EOG, corresponding to muscular activ-
ity associated with movement of the eyes), electromyograms
(EMG, corresponding to muscular activity associated with
movement of the chin or legs), electrocardiograms (ECG,
corresponding to electrical activity of the heart), as well
as other signals corresponding to respiration air flow and
blood oxygen levels. The present paper focuses on EEG
and EOG signals. Details of the signals utilized appear in
Section 3.1.

2.1.2 Standards for human sleep stage scoring

The American Academy of Sleep Medicine (AASM) main-
tains standards for conducting sleep studies and for cate-
gorizing PSG signal data into four sleep stage categories:
Sleep Stage 1 (S1), Sleep Stage 2 (S2), Sleep Stage 3 (S3), and
Rapid-Eye Movement or REM (R) [15]. Stages 1–3 describe
varying depths of sleep. Stages 1 and 2 are often termed
light sleep (with Stage 1 being the lighter of the two),
while Stage 3 is termed deep sleep. REM sleep owes its
name to rapid movements of the closed eyes during sleep,
and is associated with dreaming [16], though dreams are
now known to occur in other stages of sleep, as well, with
evidence that dream content differs between REM and non-
REM sleep [17].

During staging, PSG signals are divided into 30-second
intervals called sleep epochs, each of which is scored by
a technician into either one of the four stages, a wake
stage, or a movement stage. The resulting sequences of
sleep stages are known as hypnograms. See Fig. 1. Scoring
decisions are made by quantitative and visual analysis of
electrical signals, relying on spectral characteristics such as
low-frequency (delta band) waves in stage S3, as well as
time-domain features such as K-complexes in stage S2. The
short bursts of periodic waveforms known as sleep spindles
that are common in stage S2 represent a third class of mixed
time-frequency domain features used during human expert
scoring. See Fig. 2. Sleep technicians must be trained to
score sleep reliably, and the task of of scoring a sleep study
requires considerable effort and time.

Fig. 1. Sleep scoring involves examining a continuous-time polysomno-
gram (top) to produce a symbolic, discrete-time hypnogram (bottom).
Only one EEG channel is shown. Multiple EEG, EOG and other chan-
nels are typically used.

Fig. 2. Sample of stage S2 sleep EEG, showing a sleep spindle. Expert
scorers rely on spindles and other time-domain and frequency-domain
features to assign sleep samples to stages.

2.2 Convolutional neural networks
Convolutional Neural Networks (CNNs) are variants of
neural network (NN) statistical learning models and have
been successfully applied to image recognition tasks,
achieving current state-of-art results in image classifica-
tion [18], [6], [4]. Like other neural network types for
classification, CNNs take as input unlabeled data in the
form of vectors (multivariate measurements), and output
information about the predicted class membership of the
input vectors.

CNNs are composed of stacks of three main types of
processing layers: convolutional layers, pooling layers, and
fully connected layers. Each successive layer applies a func-
tion to its input data vectors and passes a transformed
version of the data vectors as input to the next layer. See
Fig. 3. We briefly describe each of these types of layers,
below. See [19] for a more detailed discussion of CNNs.

2.2.1 Convolutional layers
Convolutional layers apply linear transformations followed
by non-linear activation functions to obtain each individual
component of the data vector to be passed to the next layer.
The components of a layer’s input vector that contribute to a
given output component are restricted to a small contiguous
patch of the input layer, making the linear transformation a
“local” operation. Furthermore, the coefficients of these lin-
ear transformations are identical for all output components,
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making processing invariant to translations in the input.
Because coefficients are shared across processing units, it
is common to view the matrix of coefficients as a “filter”
(kernel) that slides across the input in order to compute the
linear transformation at various locations. Rectified linear
(ReLU) activation functions and their variants [20] are typi-
cally applied to the outputs of the convolutional filters.

2.2.2 Pooling layers

In contrast with convolutional layers, pooling layers simply
down-sample the data vectors from the preceding layer
by applying an aggregating function over local patches
of contiguous input elements, yielding a lower-resolution
rendering of the input vectors. The maximum (over each
local patch of the given layer’s input) is a typical choice
of aggregating function, in what is referred to as “max-
pooling”. Pooling is intended to control over-fitting by
reducing the total number of parameters in the network,
and to increase robustness to minor variations in the input
data [19]. Pooling also increases filters’ receptive fields,
allowing filters in deeper layers to use information from a
greater portion of each input datum.

2.2.3 Fully connected layers

The final (output) layers of a CNN are most often fully
connected layers as in traditional NNs. A fully connected
layer applies a linear transformation to its input vectors,
followed by a nonlinear activation function. Unlike a con-
volutional layer, the linear transformation associated with
a fully connected layer is not subject to the locality and
spatial invariance constraints. In other words, the output
of a fully connected layer is the result of applying the
nonlinear activation function to a completely general linear
transformation of the full input vector. For classification
tasks, it is customary to include one output unit per class,
and to use a softmax activation function to ensure that
the output vector is normalized to sum to 1, reflecting an
estimate of the posterior class distribution as suggested in
Fig. 3.

Fig. 3. Convolutional neural network illustration. Pooling layers (see text)
not shown.

General comments on CNNs

NNs’ predictive power derives from their ability to repre-
sent highly nonlinear functions through the composition

of nested nonlinear activation functions and linear trans-
formations. While traditional NN layers apply functions to
their entire input vectors, the convolutional and pooling
layers in CNNs apply functions to smaller local patches of
data. The sharing of coefficients across patches, described
above, requires fewer parameters and therefore decreases
the representational power of CNNs compared to fully-
connected NNs of the same number of processing units. To
an extent, this provides a useful sort of regularization that
helps to reduce overfitting, given the large size of typical
deep networks. It also reduces the computation time needed
for training models in domains with high-dimensional data,
and works well for problems where local patterns are
meaningful for classification. The latter situation occurs in
sleep scoring, where translation-invariant signal features are
important, including K-complexes and sleep spindles [15].

Prior work in visualizing CNN layer outputs in the
context of image recognition suggest that CNNs extract local
patterns within a data sample in early layers and aggregate
them into larger patterns descriptive of the entire sample in
deeper layers of the model [21]. This phenomenon of hier-
archical feature development with depth has not previously
been documented in the context of sleep stage classification
based on PSG signals, but will be described in an upcoming
paper (see [22] for a preliminary version).

2.3 CNNs, signal classification, and sleep

CNNs are often used for image classification and two-
dimensional pattern detection tasks. Less research has been
done in one-dimensional signal classification with deep net-
works. Prior research exists in sound recognition [23], [24],
[25] and EEG signal analysis [26]. Deep NN research in sleep
stage classification from PSG signals is rarer still. We are
aware of prior PSG-related works using auto-encoders [27],
deep belief networks [28], and CNN [29], respectively. The
recent paper [30] also considers a more complex architecture
that combines CNN and LSTM recurrent neural networks.
As compared with [29], the present paper explores the
use of multi-channel PSG input data in preference to only
single-channel EEG, and uses deeper CNN architectures
with the aim of improving sleep stage classification perfor-
mance. Notably, we also take steps toward understanding
the source of the superior performance of our network,
showing that it spontaneously discovers signal features such
as the rapid eye movements that characterize the REM sleep
stage, the sleep spindles that occur in sleep stage S2, and the
slow waves that are typical of stage S3.

3 METHODOLOGY

3.1 Data

PSGs from the publicly-available Physionet database [31]
were used for training and evaluating neural network
models. Specifically, the Study 1 data from the Sleep-EDF
Database [Expanded] [32] was used. The database is com-
posed of 20 healthy patients’ PSG data from two full days
of recording, totaling 39 recordings (data from one patient
was only available for one day). PSG data for each patient
consisted of two EEG signals, (EEG Fpz-Cz, EEG Pz-Oz)
and one EOG signal (EOG horizontal) sampled at 100 Hz.
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Accompanying hypnograms for the full day PSG recordings
are included. Each patient record (all samples for one night
of that patient’s sleep) was labeled by precisely one of
six human expert scorers. Each expert scored one or more
patient records.

Pre-processing. Input data representation
To avoid including epochs from non-sleep periods, raw
data before the first observed epoch of sleep in each PSG
recording were discarded, as were the data after the last
observed epoch of sleep. Because the stage classification of
a given sleep epoch depends on information about neigh-
boring epochs [15], the multi-hour PSG signals were seg-
mented into overlapping 150-second, or 5-epoch, samples as
in [29]. The mean number of samples per patient was 1813,
with a standard deviation of 357. Models were trained to
categorize the middle epoch of each sample. The movement
epochs during sleep were removed from the dataset because
of their rarity, leaving five options of sleep encoding for each
sleep epoch. Given that three signal channels were used,
two EEG channels and one EOG channel, input data to the
network took the form of two-dimensional data of shape
(15000, 3) composed of three 150-second signals sampled
at 100 Hz. The first convolutional layer in the model in-
terpreted the three signals as channels of a 15,000-length
vector; filters in that layer take act on all three channels at
once. The class labels were coded as one-of-five categories
(Awake, S1, S2, S3, REM) in a one-hot encoded vector.

3.2 Model architecture

The model architectures explored in this study were in-
spired by recent state-of-the-art networks that achieve high
performance by increasing depth. Architectures modeled
on the VGG network [6] and its successors, that use small
convolutional filters, multiple stages with stacked convo-
lutional layers separated by pooling layers, and increasing
numbers of filters with depth, were tested alongside vari-
ants of residual networks [33] that feature skip connections.
We experimented with architectures divided into 1 − 6
stages, each consisting of 1 − 6 convolutional layers, plus
batch normalization (which was found to be more effective
than dropout and both L1 and L2 regularization) and max-
pooling layers. Several such architectures were considered.
We did not perform an exhaustive parameter sweep, as the
time needed would be prohibitive. Instead, we adjusted
values incrementally, taking into account available GPU
memory, among other factors. The model reported in this
paper is the current best performing model and is based on
the architecture suggestions outlined in [34]. In particular,
the architecture is designed so that the receptive fields of the
filters in the deepest layers of the network include most of
the five-epoch input window. The model structure is shown
in Fig. 4 and is described below.

Following [34], our model is structured in levels con-
taining stacked convolutional layers separated by pooling
layers. The model contains seven levels with 6 convolutional
layers in the first level, 3 convolutional layers in each of
the three levels that follow, a single convolutional layer in
the fifth level and sixth levels, followed by a final sixth
level consisting of two fully-connected layers. All early

Fig. 4. Network architecture proposed in this paper.

convolutional layers have kernel sizes of length 100 as
in [29] and a stride size of 1. Because the sleep epoch to be
classified was in the middle of each 150-second input vector,
no padding was used during training, and experiments
with padding did not yield better results. As in [6], the
number of filters in each convolution stayed the same or
increased after down-sampling so that each layer within
every stage required roughly the same computational time.
Activations in all layers were ReLu linear rectifiers, known
to provide improved training convergence [18]. The output
of the model was a vector of five numbers representing the
probability of each class, calculated via a final softmax layer.

3.3 Model training and evaluation

3.3.1 Training procedure
Model weights were initialized as in [33], by sampling
from a Gaussian distribution with zero mean and standard
deviation

√
2/nl in layer l, where nl is the product of the

number of input channels and the number of weights per
filter in layer l. Stochastic gradient descent was used to
minimize the cross entropy loss function applied to the
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softmaxed output. Training used mini batches of size 280
– the largest size that could be accommodated by the P100
GPU. To account for class imbalance, gradient updates from
mini batch samples were weighted by the inverse of class
frequency in the training set to achieve balanced training
across each class. The only regularization used was the
addition of batch normalization layers preceding non-linear
activations as in [35]. The initial learning rate of 0.01 was
progressively decreased after validation accuracy stopped
increasing. Models were trained for between 30 and 100
epochs. For ten-fold experiments, training sets consisted
of approximately 27,000 samples. Different model archi-
tectures were built and trained in TensorFlow [36] and
Keras [37] running on the NVIDIA CUDA platform, using
NVIDIA K20, K80, and P100 GPUs.

3.3.2 Hyperparameter selection and performance evalua-
tion
An exhaustive search of the hyperparameter space was
not performed because of time constraints. Guidance from
the literature was used in setting certain hyperparameter
values in advance of training. For example, the depth of
the CNN model was determined based on receptive field
considerations as in the reference by X. Cao [34]. Limited
alternate values of other hyperparameters were evaluated
by means of four-fold cross-validation. The 20 patients’ data
were compiled into four folds, each containing training,
validation, and test sets; training sets included 13 patients,
validation sets included 2 patients, and test sets included
5 patients. Folds were randomly compiled so that every
patient’s data appeared exactly once in a test set for one
of the four folds. Performance on the validation fold was
used for hyperparameter selection. For each fold, trained
models were evaluated on test data. Final performance
metric values were calculated directly from the cumulative
confusion matrix created by adding together the confusion
matrices from each fold. Metrics reported include precision,
recall, and F1-score on each of the five classes as well as net
classification accuracy.

3.3.3 Comparison with human expert inter-scorer agree-
ment
Agreement among human expert sleep scorers was also
used as a benchmark for classification performance, relying
on the inter-scorer data reported in [2], [1], [3].

3.4 Visualization and analysis of learned internal rep-
resentation
Features learned by the network were studied through
a visualization technique based on [38] that displays the
difference in the activation of a given filter that results from
removing segments of the input signal(s) at different points
in time. We modified Algorithm 1 in [38], which is designed
for two-dimensional images, to allow its use on the one-
dimensional PSG signals considered in the present paper.
Human sleep PSG samples were used as input signals to
drive the visualization process. Synthetic limited-duration
sinusoidal burst signals were also used as inputs to better
identify the time-frequency response of particular filters,
providing supplementary information to test hypotheses

about the nature of the learned features in terms of the
amplitude, frequency, and duration of the input signals.

We previously attempted to use a visualization tech-
nique based on gradient descent synthesis of signal inputs
that lead to maximum activation of a given filter [39].
However, we found it necessary to employ regularization in
order to prevent high-frequency signal content that appears
unnatural, and were not able to arrive at an objective basis
for selecting the value of the regularization constant. An al-
ternate visualization route that merits exploration in future
work is the so-called multifaceted visualization of [40]. The
latter technique allows uncovering different feature types
that may be associated with filters in deeper layers.

4 RESULTS AND DISCUSSION

4.1 Predictive performance

4.1.1 Overall and per-stage classification results

TABLE 1
Cumulative confusion matrix with precision, recall, and F1-Score. Table
entries show the number of epochs of a given class as classified by a

technician (rows) and by the model (columns). S1, S2, S3, A, R are the
class labels for sleep stage 1, sleep stage 2, sleep stage 3, Awake, and

REM sleep, respectively. Overall accuracy (and micro-F1) is 81%.
Macro-F1 is 72% (arithmetic mean of F1 scores in rightmost column).

S1 S2 S3 A R Recall F1
S1 1402 554 11 356 369 48% 47%
S2 697 15243 777 533 487 87% 87%
S3 9 587 5071 34 1 88% 87%
A 550 142 22 1589 131 56% 56%
R 414 700 12 302 6276 80% 83%

Precision 46% 88% 86% 56% 86% 72%

Overall accuracy for the model was 81%, as calculated
from the cumulative confusion matrix in Table 1, by divid-
ing the sum of the diagonal elements (samples classified
correctly) by the sum of all of the elements (all samples).
Very good individual class performance was attained on
sleep stages S2, S3, and REM in terms of precision, recall,
and F1-scores. The worst performing classes by the same
metrics were S1 and the Awake stage, as reflected, also, in
a lowered overall macro-F1 score of 72%. The observed per-
stage performance differences are not surprising, as stages
S1 and Awake occur much less frequently in normal human
sleep than other stages, and stage S2 is the most frequent
of all; see [41], p. 20 (keeping in mind that stage S3 in
the updated AASM standard used in the present paper
corresponds, approximately, to the union of stages 3 and
4 in the older Rechtschaffen-Kales standard used in [41]).
Additionally, Awake stage performance was limited by the
elimination during pre-processing of all input data occur-
ring before the onset of sleep and all data after the last epoch
of sleep, as described in the second paragraph of Section 3.1.

4.1.2 Comparison with prior work
Performance of our model surpasses that of prior CNN
work [29] on the same dataset. The latter paper reported
an overall accuracy of 74%, training a shallower, six-layer
CNN model on a single EEG Fpz-Cz signal. We modified
our model to train on a single EEG signal in order to
allow a performance comparison with [29]. After evaluating
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performance on each fold, total accuracy of our approach on
a single EEG channel was 80%, which comfortably exceeds
the 74% of [29]. Performance of our approach decreases only
minimally when the number of channels is reduced, from
81% for three channels to 80% for a single channel. This fact,
together with the substantial performance improvement of
our approach over [29], suggests that increased network
depth has a greater effect on performance than the use of
multiple input channels.

A more complex architecture that uses a CNN as a fea-
ture extractor, followed by a bi-directional LSTM recurrent
neural network [30] attains a maximum accuracy of 82%
on the same data set used in the present paper, only a 1%
improvement over our results. In comparing [30] with the
present paper, it is important to note that data preprocessing
in [30] retains 30-minute periods of Awake epochs both
before the onset of sleep and after the end of sleep (see
Section IV.A of [30]), while the present paper keeps only the
data between sleep onset and the last epoch of sleep. Thus,
the CNN model of [30] is provided with a substantially
greater amount of Awake data from which to model that
particular stage. Better performance of [30] on stage Awake
leads to higher macro-F1 scores of 76.9% or 73.1% than our
72% in Table 1, depending on which of the two available
EEG channels is used. The present paper goes considerably
beyond [30] in uncovering the internal network features
that result from learning, and that underlie the network’s
classification performance. See Section 4.2, where it is also
shown that the emergent internal features relate closely to
signal features used by human sleep experts.

4.1.3 Comparison with human expert scorers
Comparing our results to human inter-scorer agreement
provides a contextual backdrop for the classification per-
formance achieved in this and other papers. Whereas one
would expect an individual scorer to be self-consistent in
their evaluation of sleep stages, a group of scorers may differ
in how they score the same epochs. These rates of inter-
scorer agreement would then serve as performance goals
for a model trained on many scorers’ classifications, such as
ours.

Table 2 shows results reproduced from [2], a study that
compiled more than 2,500 human scorers’ classifications on
1,800 epochs for a total over 3,000,000 scoring decisions.
Table 2 can be thought of as a confusion matrix, the rows
representing ground truth for each sleep epoch (interpreted
as majority score attributed to the epoch) and columns as the
classifications of the collective pool of scorers. Overall inter-
scorer accuracy was 82.6%, which is on par with our results.
Comparing with Table 1, human inter-scorer agreement per-
forms better than our deep CNN on stages S1, Awake, and
REM, while it matches our network’s classification perfor-
mance on stage S2; and our network’s stage S3 performance
exceeds inter-scorer agreement. Human scorers’ superiority
on S1 and Awake stages, especially, leads to a higher human
macro-averaged F1 score of 77% in Table 2, as compared
with our network’s score of 72% in Table 1.

We hypothesize that the observed differences in recall
and precision between our model and [2] arise from
the large variance in human inter-scorer agreement and
the small number of scorers (only seven) who scored our

Fig. 5. Sample hidden layer outputs for the five classes. Outputs taken
from same filter in final convolutional layer after batch normalization.

dataset. High variation between scorers is supported by
other research in inter-scorer accuracy. Reviews of inter-
scorer agreement and meta studies report similar or worse
results for overall inter-scorer accuracy and varying per-
formance across classes, with the highest accuracy from
stage REM (78-94%) and sleep stage S2 epochs (79-90%) and
the lowest from stage S3 (69%) [1], [3]. Surprisingly, intra-
scorer agreement appears to be comparable to inter-scorer
agreement; one study reported accuracies of the same scorer
on data re-scored after a median of 6.5 months to be in the
range of 79-87% [3].

The reported inter-scorer reliability of 82.6% [2] serves
as an aspirational benchmark for objectively meaningful
model accuracy over many epochs and scorers. Our model’s
accuracy of 81%, and the 82% accuracy of [30] are on par
with this benchmark.

TABLE 2
Inter-scorer agreement conducted by the AASM: reproduced from [2]

with proxy precision, proxy recall, and accuracy reported. Overall
inter-scorer agreement is 82.6%. Macro-averaged F1 is 77%.

S1 S2 S3 A R Recall
S1 187,634 64,700 205 32,545 12,910 63%
S2 116,274 1,570,861 121,141 13,080 23,180 85%
S3 298 87,033 181,337 224 350 67%
A 29,658 11,222 779 250,434 5703 84%
R 25,875 22,883 342 6624 531,611 91%

Prec 52% 89% 60% 83% 93%
F1 57% 87% 63% 86% 92% 77%

4.2 Learned features

Neural networks are notorious for providing opaque repre-
sentations of knowledge. Given the very strong predictive
performance demonstrated in Section 4.1 by the deep net-
work of the present paper, we are nonetheless motivated
to explore the features learned by the hidden layers of
the network, which are the basis for its predictions. We
approached this task through a combination of techniques,
including visualization and analysis of various filters’ re-
sponses to human sleep as well as to synthetic limited-
duration sinusoidal wave bursts. With traditional CNNs,
it is common to display layer outputs as two-dimensional
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Fig. 6. Hidden layer outputs for three sleep stage S2 datapoints. Outputs
taken from random filters in final convolutional layer after batch normal-
ization.

heat maps. Because our data is one-dimensional, we display
hidden layer outputs as line graphs.

4.2.1 Visualization of randomly selected signal epochs
Our early visualization attempts used randomly selected
input data samples belonging to different sleep stages, in the
hope of uncovering differences in hidden layer activations
across stages. Unfortunately, most of these visualizations
did not reveal any such differences clearly. For example, see
Fig. 5, which shows filter activations in the final convolu-
tional layer in the model proposed in the present paper.

The complexity associated with untangling the hidden
layer activations stems, in part, from the fact that each input
datum comprises not just one sleep epoch, but rather a
sequence of five consecutive epochs, with the label of the
datum corresponding to the sleep stage of the middle epoch.
We denote a specific data point as the composition of the
five epochs that comprise it, such as 1333R or AA222, where
1, 2, 3, A, and R are the five class labels. We visualize the
hidden layer outputs on data points that share the same
class label for the middle epoch but have different labels
for the neighboring epochs. Fig. 6 contains hidden layer
outputs on three distinct data points all labeled S2: the data
point corresponding to the first epoch of sleep stage S2 in a
patient, 11222, a continuous portion from the same patient,
22222, and the data point corresponding to the last epoch
of sleep stage S2, 222AA. Higher volatility is observed at
portions in the signal that correlate positionally with the
area of the input data that are not sleep stage S2. These
observations suggest that the internal network response
differentiates between stages within a five-epoch datum. In
combination with the reduced performance on transitional
stages reported in the inter-scorer study [2], these visualiza-
tions point to categorization differences between continuous
and transitional sleep stage epochs as an area for additional
exploration. We describe our results in this direction below.

4.2.2 Network discovery of signal features used by human
experts
An interesting finding surfaced when we examined how the
internal layers of the network respond to localized signal

features in human sleep signals, as well as in controlled
synthetic signals. Namely, internal features develop spon-
taneously within the hidden layers of the network during
training that are associated closely with specific features that
figure prominently in the AASM staging standard, which
expert human scorers rely on closely. We describe three of
these here briefly. Additional details will be provided in an
upcoming paper. See [22] for a preliminary report.

EOG features
Emergent features of interest were found in both the EOG
and EEG channels. The first feature, associated with the
EOG channel, relates to the rapid eye movements that are
the hallmark of the REM sleep stage. Fig. 7 shows the
response to stage REM human sleep of a particular filter in
layer 14 of the CNN described in this paper. A visualization
technique based on [38] is used that displays the difference
in activation produced by removing segments of the input
signal(s) at different points in time. The activation difference
is displayed at the bottom, showing that the segment of
high-amplitude EOG waves toward the center of the plot
has the greatest impact on the activation of this filter. Activa-
tion difference appears to increase slightly before the onset
of the high-amplitude EOG, and to persist past the end of
this segment; however, this effect is an artifact of the ac-
tivation difference computation, which averages activations
over a short time-window. The response of the filter of Fig. 7
to synthetic data (not shown in the figure) shows greater
response to high-duration EOG signals (above 250µV am-
plitude), which is consistent with the typical EOG signature
of rapid eye movements [42].

EEG features: slow-wave sleep
A first emergent EEG feature relates to stage S3 sleep,
described in the AASM standard, versions 2.1 and later, as
being characterized by “slow” waves with frequencies in
the 0.5 − 2 Hz range and peak-to-peak amplitudes above
75 µV (see the summary of updates in version 2.1 in [43]).
Fig. 8 provides an example of the response to a data sample
of actual stage S3 human sleep, of a particular filter in
layer 13 of the network described in the present paper. The
activation difference is displayed at the bottom, showing
that the greatest impact in the activation of this filter is
produced by the contiguous segment of slow waves toward
the center of the plot in the EEG channel shown at the top.

Fig. 9 shows that the frequency response of the filter
identified in the preceding paragraph is greatest in the
frequency range of approximately 0.56 − 1.8 Hz, where
we include frequencies for which the filter’s response is at
least one-half of its maximum value. This range matches the
range required for slow-wave sleep very closely. Likewise,
Fig. 10 shows that the filter’s response is greatest for peak-
to-peak signal amplitudes above 100 µV. Therefore, both
the frequency response and amplitude response of this
particular filter closely match the AASM criteria for slow
waves in stage S3 sleep.

EEG features: sleep spindles
A second filter, also in layer 13 of the network, is associated
with a different emergent EEG feature. This second filter
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Fig. 7. Response to stage REM human sleep of a filter in layer 14 of the
network described in the present paper that learns to detect rapid eye
movements. Top plot shows the EOG input channel. Bottom plot shows
the difference in filter activation associated with removing a portion of the
input at the corresponding locations along the time axis. The difference
in activation is greatest for the large-amplitude EOG waves toward
the center, associated with eye movements. The displayed activation
response starts shortly before the onset of eye movements, and persists
past the end of eye movements, because it uses the average over a non-
zero time window.

responds most sensitively to the brief (0.5−2s) wave packets
at 11− 16 Hz known as sleep spindles, which are character-
istic of sleep stage S2, as described in the AASM standard.
Fig. 11 shows the response of this filter to a sample of actual
stage S2 human sleep that contains a sleep spindle. Fig. 12,
Fig. 13, and Fig. 14 show that the activation of this particular
filter in response to synthetic limited-duration sinusoidal
wave bursts is greatest in the ranges of frequencies, burst
durations, and amplitudes that are consistent with sleep
spindles.

However, we see in Fig. 12 that, unlike the filter de-
scribed above that responds almost exclusively to slow-
wave sleep, sleep spindles are not the only waveforms
detected by the second filter. In fact, this filter also responds
to frequency content in the slow-wave sleep range. The
apparently different behaviors of the two filters may be
attributed to the fact that they both occupy a deep layer.
At that point in the network, the desired minimization of
the output classification error exerts pressure to model the
individual output classes, that is, the sleep stages. Slow
waves are strong indicators of stage S3, while sleep spindles
alone do not characterize stage S2, as slow waves and K-
complexes co-occur with spindles relatively often in stage
S2. Thus, it is not surprising that a more complex feature
profile should arise in association with sleep spindles, as we
observe in the second filter.

4.2.3 Emergent features: discussion
We found through an analysis of internal responses of
our CNN to human sleep, and confirmed through the use

Fig. 8. Response to stage S3 human sleep of a filter in layer 13 of the
network described in the present paper that learns to detect slow waves.
Top plot shows one EEG input channel. Bottom plot shows the difference
in filter activation associated with removing a portion of the input at the
corresponding locations along the time axis. The slow wave train toward
the center has the greatest effect on activation.

Fig. 9. Frequency response to synthetic data of a filter in layer 13 of the
network described in the present paper that learns to detect slow-wave
sleep. Activation is greatest in the frequency range 0.56− 1.8 Hz.

of synthetic signal data, the automated emergence during
learning of internal features based on the EEG and EOG
input signals that correspond closely to those that enter into
human expert sleep scoring. A connection of the emergent
features with those used by sleep experts is not entirely sur-
prising, as the stage labels provided for supervised training
of the network reflect the AASM standard. Nonetheless, it
is very interesting that specific filters appear to have spe-
cialized in individual features, be it rapid eye movements,
slow EEG waves, or sleep spindles, whereas individual
features are generally not sufficient to characterize the sleep
stages. Given the excellent classification performance of
our network in most cases, as discussed in Section 4.1, it
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Fig. 10. Signal amplitude response to synthetic data of a filter in layer 13
of the network described in the present paper that learns to detect slow-
wave sleep. Activation is greatest for peak-to-peak signal amplitudes
above 100 µV.

Fig. 11. Response to stage S2 human sleep of a filter in layer 13 of
the network described in the present paper that learns to detect sleep
spindles. Top plot shows one EEG input channel. Bottom plot shows the
difference in filter activation associated with removing a portion of the
input at the corresponding locations along the time axis. The spindle
toward the center has the greatest effect on activation.

is clear that the learned internal representation captures
the characteristics of the corresponding sleep stages well.
Therefore, the deepest layers of the network, closest to
the output layer, must possess the ability to combine the
individual features described above in a suitable manner,
reflecting the emergence of more complex features with
depth. This phenomenon is reminiscent of the development
of a hierarchy of emergent features with depth that has
been reported for CNN in two-dimensional image recog-
nition (e.g., [21]). Further results along these lines in the
present context of sleep stage classification based on time-
dependent physiological signals will be reported in [22].

Fig. 12. Frequency response to synthetic data of a filter in layer 13 of
the network described in the present paper that learns to detect sleep
spindles. Activation is greatest in the spindle frequency range 11 − 16
Hz, but is also large in the slow wave sleep range near the left end of
the plot.

Fig. 13. Duration response to synthetic data of a filter in layer 13 of
the network described in the present paper that learns to detect sleep
spindles. Activation is greatest in the duration range 0.5− 2 s.

5 CONCLUSIONS

We explored the use of deep convolutional neural net-
works (CNN) for classification of sleep stages from multi-
channel polysomnogram (PSG) data, more specifically EEG
and EOG. Classification accuracy of the proposed tech-
nique reached 81%, substantially surpassing that of prior
work [29] that uses a single-channel version of the same
data set. Reducing the number of input signal channels from
three to one reduced accuracy only very slightly, to 80%,
thus suggesting that the performance gains of our deeper,
multi-channel model over the 74% accuracy reported in [29]
derive mainly from increased network depth, and not from
the use of multiple signal channels.

Performance of our network design in terms of overall
classification accuracy is also competitive with that of a
more complex combined CNN and LSTM recurrent neural
network approach [30], as well as with human expert inter-
scorer agreement [2]. Per-stage performance on stages S1
and Awake is limited by a scarcity of epochs of these stages
during normal human sleep, exacerbated by the removal
during data preprocessing in the present paper of epochs
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Fig. 14. Signal amplitude response to synthetic data of a filter in layer
13 of the network described in the present paper that learns to detect
sleep spindles. Activation is greatest for signal amplitudes in the range
20− 120 µV peak-to-peak.

prior to sleep onset and after the end of sleep. This suggests
that comparative classification performance of the approach
proposed in the present paper may be underestimated by
the results reported here.

This paper provides an important contribution beyond
a CNN architecture that performs well on the task of auto-
mated sleep stage classification. Namely, we also took steps
toward understanding the mechanisms through which the
proposed deep neural network attains its strong predictive
performance. By examining the hidden layers of the net-
work via visualization of activations elicited by both natural
and synthetic signals, we showed that individual filters in
the network spontaneously learn to identify specific EEG
and EOG signal features that figure prominently in human
expert scorers’ repertoires, such as rapid eye movements,
large-amplitude slow waves, and sleep spindles. To the
best of our knowledge, feature emergence in deep CNN
for one-dimensional sleep signal classification has not been
described in prior work. A more detailed description of
this phenomenon is the subject of ongoing research by the
authors of the present paper. A preliminary report that
includes additional results appears in [22]. In addition to
better understanding the emergence of well-known signal
features in deep networks, the search for predictive learned
features that are not currently known to clinicians suggests
itself as an interesting direction for future work.
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